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Abstract
The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take
precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air
quality forecast. Statistical models based on linear multiple regression (MR) and classification and regression trees (CART)
analysis were developed successfully, for Macao, to predict the next day concentrations of NO2, PM10, PM2.5, and O3. All the
developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from
0.78 to 0.93) for all pollutants. The models utilized meteorological and air quality variables based on 5 years of historical data,
from 2013 to 2017. Data from 2013 to 2016 were used to develop the statistical models and data from 2017 was used for
validation purposes. A wide range of meteorological and air quality variables was identified, and only some were selected as
significant independent variables. Meteorological variables were selected from an extensive list of variables, including
geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables
translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest
24-h levels. The models were applied in forecasting the next day average daily concentrations for NO2 and PM and maximum
hourly O3 levels for five air quality monitoring stations. The results are expected to be an operational air quality forecast for
Macao.
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Introduction

Seven million people die every year from the effects of air
pollution. More than 90% of such deaths are in developing
countries (WHO 2019). Across southern Asia, levels of fine
particulate matter (PM2.5) and surface ozone (O3) exceed the
World Health Organization (WHO) limits for much of the year
(Kumar et al. 2018). Macao is located in Southern China, in
the Pearl River Delta (PRD) region. The levels of nitrogen
dioxide (NO2), particulate matter (PM), particulate matter
with an average aerodynamic diameter below 10 μm and
2.5 μm (PM10 and PM2.5, respectively), and ozone (O3) in
Macao are high and often exceed the established limit values
recommended byWHO’s air quality guidelines (AQG). Since
2010, the worst air quality index classes in Macao have been
due to PM10 and PM2.5 (SMG 2019). Macao was listed as the
number one most densely populated region in the world
(Sheng and Tang 2013), with a population density of about
20,000 inhabitants/km2. A significant proportion of Macao
urban population is being exposed to air pollutant concentra-
tions above the limit or target values.
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The exposure to air pollutants such as NO2, PM, and O3

increase the chance of hospital admissions for cardiovascular
and respiratory disease and mortality in the world (Liu and
Peng 2018; WHO 2018). O3 at the ground level is associated
with numerous harmful effects on respiratory health, at levels
commonly found in urban areas throughout the world, con-
tributing to morbidity and hospital admissions related to re-
spiratory disease, even at low ambient levels (Entwistle et al.
2019). Regarding particulate matter, for human health, small
particles (PM2.5) are particularly dangerous as they can pene-
trate deeply into the lungs and be transported directly into the
bloodstream (Wiśniewska et al. 2019). Furthermore, mixtures
of NO2-PM2.5-O3 exist in ambient environments, being the
combinations of these pollutants more harmful to human
health (a mixture with relatively low levels of some pollutants
combined with relatively high levels of other pollutants was
found to be equally or more harmful than a mixture with high
levels of all pollutants) (Liu and Peng 2018). In Macao,
traffic-related pollution is high, primarily due to high vehicle
emissions and urban canyon topology (He et al. 2000).

In this context, it is relevant to develop a reliable method-
ology to forecast the concentration of air pollutants, which can
provide an alert for health hazards in advance, in a way that
the population can take precautionary actions to avoid
exposure.

Recent studies have been conducted to access meteorolog-
ical influence on air quality (Tong et al. 2018a, b; Xie et al.
2019), and related to air quality forecast (Lee et al. 2017; Deng
et al. 2018), both in PRD region. The current paper focuses the
development of air quality forecast models by statistical
methods for the most critical air pollutants in Macao.

The methods for the prediction of the air pollutant concen-
tration can be roughly divided into two types: deterministic
and stochastic. Statistical approach learns from historical data
and predicts the future behavior of the air pollutants.
Meteorological conditions significantly affect the levels of
air pollution in the urban atmosphere, due to their important
role in the transport and dilution of pollutants. It has also been
concluded that there is a close relationship between the con-
centration of air pollutants and meteorological variables
(Zhang and Ding 2017). Thus, multiple linear regression
models (MR) are trained based on existing measurements
and are used to predict concentrations of air pollutants in the
future, according to the corresponding meteorological
variables.

The Greater BayArea (GBA) of China consists of nine cities
of Guangdong province, and the Special Administrative Region
of Hong Kong and Macao. The synoptic situation of Macao
and other cities of the GBA is closely related due to its geo-
graphic proximity. The GBA experiences a complex temporal
and spatial climatic condition due to topographic variations,
urban morphology, and land-water contrasts. Located along
the southeast coast of Mainland China, Macao is surrounded

by the sea on three sides, with a subtropical oceanic monsoon
climate that is characterized by high temperatures, high rates of
evaporation, high levels of atmospheric moisture, and abundant
rainfall (SMG 2014). In winter, Macao is influenced by the
north monsoon, the climate is cold and dry with the predomi-
nant wind from the north quadrant. In summer, the northeast
monsoon is replaced by the strong southwest monsoon with
heavy rains. Spring and autumn are transition periods.

Recent studies (Tong et al. 2018a, b) showed a rise of
surface temperature and a drop of surface absolute humidity
and wind speed at GBA due to the decline of vegetation and
irrigated cropland. The landscape of GBA is characterized by
a large flatland surrounded by the Nanling Mountains which
can prevent air pollution from the central part of China
reaching the GBA. Nevertheless, the northeast monsoon pres-
ent during the winter may transport pollutants from northern
and eastern China, along the coastline to the region of GBA
(Tong et al. 2018a, b). PM levels are usually measured higher
during the winter season, from December to February, due to
the northern wind, bringing the air pollutants to the region,
loweringmixing height, and fewer amount and lower frequen-
cy of rainfall. During summer season, from June to August,
PM levels are usually measured lower due to the southern
winds from the China sea, higher mixing height, higher fre-
quency, and amount of rainfall, which allow for a better air
pollution dispersion and deposition conditions (Lopes et al.
2016).

The air pollution of the GBA is normally associated with
emission sources at alternating spatial scales from local to
regional and transboundary (Tong et al. 2018a), under certain
synoptic conditions. Estimates show that, in this region, for
nitrogen oxides (NOx), mobile sources account for the major-
ity of emissions (50%). For PM, the industrial sector is the
main emitter, followed by mobile sources (Zheng et al. 2009).
O3 is not emitted directly to the atmosphere, but is formed in
reactions between NOx and volatile organic compounds
(VOC), being these reactions driven by absorbed solar radia-
tion (Reid et al. 2008).

Materials and methods

The statistical methods selected for this paper were both mul-
tiple linear regression analysis (MR) and classification and
regression tree (CART). Those can be a useful and straight-
forward tool in air quality studies (Choi et al. 2013; Martinez
et al. 2018; Cassmassi 1987; Clapp and Jenkin 2001). As one
of the advantages of the CART analysis is its effectiveness in
explaining the variations in pollutant levels solely by a com-
bination of meteorological conditions, regression trees can
identify specific meteorological conditions that lead to low
or elevated pollutant concentrations (Choi et al. 2013). The
basic concept of the CARTapproach is to make a hierarchy of
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binary decisions, each of which splits distribution/variation of
a target variables into two mutually exclusive branches

(groups) based on the explanatory variable/value showing
the largest reduction in variations in target variable after the
split (Choi et al. 2013).

Following precedent experiences (Cassmassi 1987; US
EPA 2003; Durão et al. 2016; Oduro et al. 2016), the statistical
models were initially created using MR analysis. As an ap-
proach to obtain improved results, mainly regarding a better
prediction of high pollutant levels, the CART analysis was
chosen to better predict the maximum concentrations.

Statistical models, based onMR and CART, were applied to
forecast the daily average concentration of NO2, PM10, PM2.5,
and the maximum average hourly concentration of O3 levels for
the next day, for each station of the air quality monitoring net-
work in Macao. This comprehends six air quality monitoring
stations, operated by Macao Meteorological and Geophysical
Bureau (SMG), being two of them classified as roadside
(Macao Roadside, Ká-Hó Roadside), two as high density resi-
dential (Macao Residential, Taipa Residential), and two as am-
bient background types (Taipa Ambient, Coloane Ambient).
Figure 1 represents the air quality monitoring stations spatial
location, within the 30 km2 of Macao region.

Data from 4-year daily series observations, from 2013 to
2016, were used to develop the forecast models, and each of
the models was evaluated using 2017 data.

Fig. 1 Air quality monitoring network spatial location in Macao

Table 1 Variables used as predictors in the MR and CART models

Variable type Variable name Variable description (units)/observations

Air quality NO2, PM10, PM2.5 Average hourly concentration values (μg/m3)

O3 MAX, CO MAX Maximum hourly concentration values (μg/m3)

16D#, 23D# 23D#: 24-h concentration averaging period between 00H and 23H;
16D#: 24-hour concentration averaging period between 16H of D1 and 15H of D0
eg: PM10_16D1, O3_MAX_23D1

D0, D1, D2, D3 D0: Forecast Day; D1: Previous Day (Forecast Day-1); D2: Forecast Day-2; D3:
Forecast Day-3

Meteo Upper-air obs.* H1000, H850, H700, H500 Geopotential height at 1000 hPa, 850 hPa, 700 hPa, 500 hPa (m)/indicator of
synoptic-scale weather pattern

TAR925, TAR850, TAR700 Air temperature at 925 hPa, 850 hPa, 700 hPa (°C)/measure of strength and height
of the subsidence inversion

HR925, HR850, HR700 Relative humidity at 925 hPa, 850 hPa, 700 hPa (%)

TD925, TD850, TD700 Dew point temperature at 925 hPa, 850 hPa, 700 hPa (°C)

THI850, THI700, THI500 Thickness at 850 hPa, 700 hPa, 500 hPa (m)/related to the mean temperature
in the layer

STB925, STB850, STB700 Stability at 925 hPa, 850 hPa, 700 hPa (°C)/indicator of atmospheric stability

Surface obs. T_AIR_MX, T_AIR_MD, T_AIR_MN Maximum, average, minimum air temperature (°C)

HRMX, HRMD, HRMN Maximum, average, minimum relative humidity (%)

TD_MD Average dew point temperature (ground level) (°C)

RRTT Precipitation (mm)/associated with atmospheric washout

VMED Average wind speed (m/s)/related to dispersion

Other DD Duration of the day: number of hours of sun per day (h)

FF Week day indicator (flag): weekday = 0, weekend = 1

Meteo, meteorological; *daily sounding at 12H (GMT+8) at King’s Park Meteorological Station - Hong Kong Observatory
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The first step of the study was to gather a set of meteoro-
logical and air quality data, namely (i) meteorological surface
observations: hourly observations from automatic weather sta-
tions, such as temperature, relative humidity, and dew point
temperature collected from the Taipa Grande Meteorological
Station; (ii) upper-air observations, such as, geopotential
heights, temperature, relative humidity, and dew point temper-
ature at various altitudes, collected from Hong Kong King’s
Park location; (iii) surface air quality measurements, from
SMG’s network, of NO2, PM10, PM2.5, and O3. Other vari-
ables were added to the analysis, as the flag for week/weekend
day and the daily sunlight period duration. These variables are
presented in Table 1.

The next step was to assess data efficiency levels, for each
parameter, through the years, in order to reject lower annual
efficiencies. The statistical models for Ká-Hó Roadside station
were not feasible, due to the lack of sufficient air quality data.
Outliers were identified and excluded from the data series. A
complimentary analysis was conducted to observe air pollu-
tion trends, monthly, weekly, and hourly patterns, and pollu-
tion roses.

A preliminary exploratory data analysis, looking at basic
statistics, like average, mode, histogram, distribution type,
correlation between different variables, and principal compo-
nent analysis, was performed to identify variables with similar

behaviors. This strategy enabled to decide the proper steps to
get the best model outcome.

The significance level of 0.05 was used in the linear MR
analysis. Some variables initially selected were rejected from
the forecast models due to collinearity. The final objective was
to obtain prediction models with the lowest possible number
of variables but with the maximum explained variance as
translated by the R2. The higher the number of variables used
by the model, the higher the risk of compromising the opera-
tional forecast, due to lack of information/missing data in case
one or more variables are not accessible. SPSS version 25 was
used to perform linear MR (stepwise method) and CART
analysis.

Model performance was determined recurring to the fol-
lowing parameters: coefficient of determination (R2) (1), root
mean square error (RMSE) (2), mean absolute error (MAE)
(3), and Bias (4).

R2 ¼
∫ni¼1 f i− f

� �
− oi−o
� �h i2

∫ni¼1 f i− f
� �2

� �
∫ni¼1 oi−o

� �2
� � ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 f i−oið Þ2
r

ð2Þ

Fig. 2 CART tree obtained for O3

MAX prediction at Taipa Ambient
station
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MAE ¼ 1

n
∑n

i¼1j f i−oij ð3Þ

Bias ¼ 1

n
∑n

i¼1 f i−oið Þ ð4Þ

where f is forecast, f is forecast average, o is observation, and
o is observation average, for each i case to the n number of
cases.

Results and discussion

The statistical models based on MR and CART analysis were
developed to forecast NO2, PM10, PM2.5, and O3 concentra-
tions. The final objective is to be able to perform a daily
forecast, for the next day, in an operational mode, by running

the prediction models after 16H (due to the daily schedules of
which the air quality data is made available).

CART analysis was tested mainly in order to better predict
the high concentration levels. For NO2 and PM, CARTanalysis
did not improve the quality of the overall predictions.
Therefore, prediction models were based only on oneMRmod-
el. In the case of O3 forecast, for three stations (Taipa Ambient,
Taipa Residential, and Coloane Ambient), CART analysis
allowed to identify split nodes, for which O3 prediction equa-
tions were determined afterwards by using MR for each node.
Figure 2 represents an example of the CART trees obtained, in
this case for O3 MAX prediction at Taipa Ambient station.

The output meteorological and air quality variables and
equations obtained with MR (or CART and MR, in the O3

MAX case) are listed in Table 2.
The models were validated with collected data from 2017.

The results show a good agreement between modelled and

Table 2 Variables and model equations for each pollutant per air quality monitoring station

Station Pollutant Model equations

Macao Roadside NO2 NO2 = 0.900 × NO2_16D1 + 0.012 × H850 − 0.168 × HRMN

PM10 PM10 = 0.900 × PM10_16D1 + 0.019 × H850 − 0.270 × HRMD

PM2.5 PM2.5 = 0.934 × PM25_16D1 + 0.009 × H850 − 0.128 × HRMD

Macao Residential NO2 NO2 = 0.919 × NO2_16D1 + 0.007 × H850 − 0.098 × HRMN

PM10 PM10 = 0.884 × PM10_16D1 + 0.019 × H850 − 0.274 × HRMD

PM2.5 PM2.5 = 0.915 × PM25_16D1 + 0.005 × H850 − 0.242 × TD_MD

O3 MAX O3 MAX = 1.123 × O3_max_16D1 − 0.314 × O3_max_23D1 − 0.055 × HR925 + 0.440 × T_AIR_MX

Taipa Ambient NO2 NO2 = 0.915 × NO2_16D1 + 0.004 × H850 + 0.758 × STB925

PM10 PM10 = 0.891 × PM10_16D1 + 0.018 × H850 − 0.261 × HRMD

PM2.5 PM2.5 = 0.918 × PM25_16D1 + 0.009 × H850 − 0.128 × HRMD

O3 MAX If [O3 MAX_16D1] ≤ 103.08
O3 MAX = 1.111 × O3_max_16D1 − 0.207 × O3_max_23D1 − 0.721 × STB850
If [O3 MAX_16D1] = ]103.08; 162.73]
O3 MAX = 1.237 × O3_max_16D1 − 0.433 × O3_max_23D1 − 1.690 × STB850
If [O3 MAX_16D1] > 162.73
O3 MAX = 0.930 × O3_max_16D1 − 0.473 × O3_max_23D1 − 8.608 × STB850

Taipa Residential NO2 NO2 = 0.848 × NO2_16D1 + 0.008 × H850 − 0.315 × TDMD

PM10 PM10 = 0.894 × PM10_16D1 + 0.017 × H850 − 0.237 × HRMD

PM2.5 PM2.5 = 0.937 × PM25_16D1 − 0.651 × TDMD + 0.746 × TAR925

O3 MAX If [O3 MAX_16D1] ≤ 129.05
O3 MAX = 1.043 × O3_max_16D1 − 0.240 × O3_max_23D1 + 0.016 × H850 − 0.163 × HRMN
If [O3 MAX_16D1] = ]129.05; 205.47]
O3 MAX = 0.997 × O3_max_16D1 − 0.387 × O3_max_23D1 + 0.055 × H850 − 0.677 × HRMN
If [O3 MAX_16D1] > 205.47
O3 MAX = 1.170 × O3_max_16D1 − 0.482 × O3_max_23D1 + 0.124 × H850 − 2.632 × HRMN

Coloane Ambient NO2 NO2 = 0.930 × NO2_16D1 − 0.617 × TDMD + 0.739 × TAR925

PM10 PM10 = 0.875 × PM10_16D1 + 0.023 × H850 − 0.331 × HRMD

PM2.5 PM2.5 = 0.903 × PM25_16D1 + 0.008 × H850 − 0.121 × HRMN

O3 MAX If [O3 MAX_16D1] ≤ 113.96
O3 MAX = 1.014 × O3_max_16D1 − 0.197 × O3_max_23D1 + 0.834 × T_AIR_MX − 0.129 × HRMN
If [O3 MAX_16D1] = ]113.96; 181.61]
O3 MAX = 1.054 × O3_max_16D1 − 0.394 × O3_max_23D1 + 2.676 × T_AIR_MX − 0.597 × HRMN
If [O3 MAX_16D1] > 181.61
O3 MAX = 0.666 × O3_max_16D1 − 0.448 × O3_max_23D1 + 7.298 × T_AIR_MX − 1.561 × HRMN
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observed concentrations, being statistically significant at the
95% confidence level. The selected models provide a good
relationship between meteorological and air quality variables,
when performing an air quality forecast under different situa-
tions. Table 3 contains the obtained model performance indi-
cators, such as, R2, RMSE, MAE, and Bias.

The obtained results performed a better R2 for PM (be-
tween 0.86 and 0.93 and, in all cases, greater for PM10 than
for PM2.5), followed by NO2 (between 0.84 and 0.90), being
the lowest explained variance achieved for O3 (between 0.78
and 0.87). Models did not show a defined trend on the fore-
casts by type of station, presenting undistinctive R2 for

roadside, residential, and ambient stations. The monitored
and forecasted concentrations, in 2017, for the models with
the highest and lowest R2 are depicted in Figs. 3 and 4, being
respectively, the one for PM10 Coloane Ambient and O3 MAX

Coloane Ambient, in 2017. The poorest results obtained in
Coloane Ambient is related with the fewest cases available
to build the model (N = 546).

Regarding the RMSE, all models presented the same trend
observed for R2, being the RMSE lower for PM (between 4.9
and 9.2 μg/m3), followed by NO2 (between 6.1 and 7.9 μg/
m3), and the highest for O3 (between 21.1 and 27.4 μg/m

3). In
the case of O3, the high RMSE obtained values were due to

Table 3 Model performance
indicators Station Pollutant Model performance indicator Model built using only

MR or CART and MR

R2 RMSE MAE BIAS MR CART

Macao Roadside PM10 0.91 9.2 6.6 1.5 ✓

PM2.5 0.90 5.9 4.0 1.5 ✓

NO2 0.89 7.9 5.8 0.9 ✓

Macao Residential PM10 0.91 8.3 5.8 1.2 ✓

PM2.5 0.86 5.9 3.6 0.9 ✓

NO2 0.87 7.8 5.6 -0.2 ✓

O3 MAX 0.81 23.2 14.0 0.0 ✓

Taipa Ambient PM10 0.92 6.8 4.5 1.1 ✓

PM2.5 0.89 5.0 3.2 1.1 ✓

NO2 0.90 6.1 4.4 0.4 ✓

O3 MAX 0.82 25.7 15.0 1.3 ✓ ✓

Taipa Residential PM10 0.92 6.4 4.1 1.5 ✓

PM2.5 0.89 4.9 3.3 − 0.3 ✓

NO2 0.84 6.7 4.6 − 0.5 ✓

O3 MAX 0.87 21.1 12.2 3.7 ✓ ✓

Coloane Ambient PM10 0.93 7.7 5.7 1.9 ✓

PM25 0.90 5.4 3.6 0.9 ✓

NO2 0.85 6.4 4.1 0.0 ✓

O3 MAX 0.78 27.4 16.9 − 1.5 ✓ ✓
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abrupt variations, on consecutive days, influencing the pre-
dicted values, since statistical models are sensitive to this kind
of fluctuations.

Regarding CART analysis for O3 prediction, three equation
nodes were used. The number of cases considered in each node
(N), the coefficient of determination (R2), the correlation coef-
ficient (r), and the standard error of the estimate are presented in
Table 4. The obtained standard error of the estimate, which is a
measure of the prediction’s accuracy, was higher for higher
concentrations prediction categories. The highest obtained stan-
dard error of the estimate for node 1 was of 17.2 μg/m3 in
Coloane Ambient station, for node 2 was of 28.8 μg/m3, and
for node 3 was of 43.6 μg/m3, both in Taipa Residential station.
This reflects the difficulty of the model on predicting the
highest O3 concentration ranges. Traffic-related pollutants, such
as PM and NO2, are dependent on meteorological conditions as
well as emission rates. Because O3 is produced in the atmo-
sphere through photochemical processes, the major meteoro-
logical factors affecting ozone concentrations are different from
those for traffic-related primary pollutants (Choi et al. 2013).

In all the cases, the variable that represents the last 24-h
pollutant concentrations (16D1) is the most prevalent,

being selected at all the forecast equations (Table 3). The
geopotential height at 850 hPa (H_850), indicator of
synoptic-scale weather pattern, is also frequently present
in the forecast of NO2 and PM. Specifically, in the case
of PM10, relevant variables are H_850 and the medium
relative humidity (HRMD), while for PM2.5, for both res-
idential stations, average dew point temperature (TD_MD)
and air temperature at 925 hPa (TAR_925, a measure of the
strength and height of the subsidence inversion) figure in
the final equations. Atmospheric stability at 925 hPa and at
850 hPa (STB_925 and STB_850, respectively) figure in
final equations in the case of NO2 and O3 MAX at Taipa
Ambient. This temperature differences between layers pro-
vide information about atmospheric stability.

The used statistical methods depend on the past series of
data. If the historical data is insufficient, forecasted data will
be less reliable. In particular, if emission sources change con-
siderably or if meteorological variables also change due to
factors related to new weather patterns eventually motivated
by climate change, the data series of the past will not represent
the updated situation, and models need to be recalculated with
more recent data.

Table 4 CART model
performance indicators Station Nodes split N Model performance indicator

R2 r Standard error
of the estimate

Taipa Ambient [O3 MAX_16D1] ≤ 103.08 873 0.93 0.97 16.57

[O3 MAX_16D1] = ]103.08; 162.73] 347 0.97 0.98 22.70

[O3 MAX_16D1] > 162.73 200 0.96 0.98 38.59

Taipa Residential [O3 MAX_16D1] ≤ 129.05 930 0.95 0.98 15.96

[O3 MAX_16D1] = ]129.05; 205.47] 242 0.97 0.98 28.84

[O3 MAX_16D1] > 205.47 99 0.96 0.98 43.62

Coloane Ambient [O3 MAX_16D1] ≤ 113.96 389 0.94 0.97 17.25

[O3 MAX_16D1] = ]113.96; 181.61] 106 0.97 0.99 24.32

[O3 MAX_16D1] > 181.61 52 0.96 0.98 40.73
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Conclusion

The development of statistical models to forecast the daily
average concentration of NO2, PM10, PM2.5, and the maxi-
mum hourly average concentration of O3 for the next day, in
Macao region, was successfully accomplished for five loca-
tions, recurring to MR analysis. In the case of O3 predictions,
CART analysis showed better results, specially improving
high concentration levels predictions, assuring a more accu-
rate prediction of critical pollution episodes.

The pollutants for which best results were obtained were
PM10, followed by PM2.5 and NO2. The most challenging
pollutant forecast was the maximum hourly concentration
of O3, scoring the lowest R2 (0.78), due to its secondary
nature as a pollutant, involved in several atmospheric
reactions that depend on the concentrations of other com-
pounds, and also key meteorological conditions, such as
sunlight and temperature.

The variables that explained most of the variability, for all
pollutants, were the concentration levels measured in the pre-
vious 24-h to the operational forecast. For PM and NO2, the
indicator of synoptic-scale weather pattern (geopotential
height at 850 hPa parameter), was also a relevant variable.

This work shows that in areas such as Macao, where data
may not be easily obtained with a high level of confidence
(such as spatially resolved emissions and traffic-related data),
this kind of statistical approach becomes an opportunity to
obtain a reliable forecast with a clearer understanding of the
main factors that affect air quality.
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